LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc.DEGREE EXAMINATION - MATHEMATICS

FOURTH SEMESTER - APRIL 2019

16/17PMT4MC02- NUMERICAL METHODS USING C++

Date: 08-04-2019	Dept. No.	Max. : 100 Marks
	- '	

Time: 09:00-12:00

Answer all the questions. Each question carries 20 marks.

I.a.1. Find the real root of the equation $x^2 + 4\sin x = 0$ correct to 3 decimal places by Newton-Raphson's method.

OR

- a.2. Find to 4 places of decimals the smaller root of the equation $e^{-x} \sin x = 0$ (3)
- b.1. Solve $x^3 8x^2 + 17x 10 = 0$ by Graeffe's method.
- b.2. Find the real root of the equation $x^3 2x 5 = 0$ by regulafalsi method correct to 3 decimal places. (5+12)

OR

- c. Using bisection method, find the negative roof of $x^3 x$ 11 = 0 correct to 4 decimal places.
 - (17)
- II. a.1. What is a pivot element and why do we have to rearrange the equations?

OR

- a.2. What is the difference between Gauss elimination, Gauss-Jordan, Gauss Jacobi and Gauss Seidel method. Explain briefly. (3)
- b. Solve by Gauss-Jacobi method: 8x 3y + 2z = 20; 6x + 3y + 12z = 35 and 4x + 11y z = 33 (17)

OR

c. Using Gauss-Seidel iteration method, solve the system of equations:

$$10x - 2y - z - w = 3$$
; $-2x + 10y - z - w = 15$; $-x - y + 10z - 2w = 27$; $-x - y - 2z + 10w = -9$.

III. a.1. The following table gives the values of density of saturated water for various temperatures of saturated steam.

$Temp^{\circ}C = (T)$	100	150	200	250	300
Density hg/m3 (=d)	958	917	865	799	712

Find by interpolation, the densities when the temperatures are 275°C respectively.

OR

a.2. Using Newton's interpolation formula and the values given in the table, calculate sin 52°.

X ^o	45	50	55	60
sin x ^o	0.7071	0.7660	0.8192	0.8660

(3)

b.1. Use Lagrange's formula to find the form of f(x), given

X	0	2	3	6
f(x)	648	704	729	792

b.2. Using Gauss's forward interpolation formula, find the value of log 337.5 from the following table:

X	310	320	330	340	350	360
log x	2.4914	2.5051	2.5185	2.5315	2.5441	2.5563

(7+10)

OR

c.1. Apply Bessel's formula to obtain y_{25} given that $y_{20} = 2854$, $y_{24} = 3162$, $y_{28} = 3544$ and $y_{32} = 3992$.

c.2. Use Laplace-Everett's formula to obtain f(1.15) given that

$$f(1) = 1.000, f(1.10) = 1.049, f(1.20) = 1.096, f(1.30) = 1.140.$$

(8+9)

IV. a.1. Given the following data, find the maximum value of y:

X	-1	1	2	3	
у	-21	15	12	3	

OR

a.2. A curve is drawn to pass through the following points:

X	1	1.5	2	2.5	3	3.5	4
у	2	2.4	2.7	2.8	3	2.6	2.1

Estimate the area bounded by the curve, x- axis and lines x = 1 and x = 4.

(3)

b.1. When do you apply simpson's 1/3 and 3/8th rules.

b.2. Evaluate $\int_{0}^{10} \frac{1}{1+x^2} dx$ by using (i) Trepezoidal rule, (ii) Simpson's $1/3^{\text{rd}}$ rule, (iii) Simpson's $3/8^{\text{th}}$ rule and

(iv)Weddle's rule. Compare the results with the actual value.

(4+13)

OF

c. 1. Obtain the value of f (90) using Stirling's formula to the following data:

X	60	75	90	105	120
f(x)	28.2	38.2	43.2	40.9	37.7

Also find the maximum value of the function from the data.

c.2. Using Bessel's formula, find the derivative of f(x) at x = 3.5 from the following table:

X	3.47	3.48	3.49	3.50	3.51	3.52	3.53
f(x)	0.913	0.915	0.918	0.201	0.203	0.206	0.208

(8+9)

V. a.1. State the formula to find successive approximation by Picard's method.

OR

a.2.State the predictor and corrector in predictor –corrector methods.

(3)

b. Solve $\frac{dy}{dx} = y - \frac{2x}{y}$, y(0) = 1 in the range $0 \le x \le 0.2$ using (i) Euler's method, (ii) improved Euler's

method and (iii) modified Euler's method by choosing h=0.1. Compare the answers. (17)

OR

c. Given $\frac{dy}{dx} = x^2 - y$, y(0) =1, find y(0.1), y(0.2) using Runge-Kutta methods of (i) second order, (ii) third order and (iii) fourth order. (17)

